BROMOCORODIENOL, A DITERPENOID BASED ON A NOVEL BICYCLIC SKELETON FROM THE RED ALGA

SPHAEROCOCCUS CORONOPIFOLIUS

F.Cafieri, E.Fattorusso and C.Santacroce*

Dipartimento di Chimica delle Sostanze Naturali, Università di Napoli, Via L.Rodinò, 22 I-80138 Napoli, Italy.

*Dipartimento di Chimica Organica e Biologica, Università di Napoli, Via Mezzocannone, 16 I-80134 Napoli, Italy.

<u>Summary</u>: The structure of bromocorodienol (3) has been determined on the basis of physical and chemical evidence and its role in the metabolic pathway of geranylgeraniol in <u>Sphaerococ-</u> <u>cus</u> <u>coronopifolius</u> is briefly discussed.

The red alga <u>Sphaerococcus coronopifolius</u> is an unusually prolific source of diterpenoids¹⁻⁷ based on two tricyclic skeletons which appear substantially rearranged. Bromosphaerol (1) and presphaerol (2)⁸ are representative of these two classes of compounds which until now have been isolated only from this organism. We wish to describe here the isolation from this alga of a new bromoditerpene alcohol, bromocorodienol (3), based on a further unprecedent skeleton.

Fresh material, found near Salerno Bay (Summer 1983), was homogenized and extracted with methanol; the chloroform-soluble material from the decanted methanol was repeatedly chromatographed on SiO₂ gel (230-400 mesh, Merck) columns using benzene as eluent. The appropriate fractions were purified by HPLC using a RP 8 column (Varian) eluted with CH₃CN to give 3 (0.004% based on fresh material), mp 89-91° (from CH₃CN), $[\alpha]_D = +34.3°$ (c 1.5, CHCl₃). 3 had molecular formula C₂₀H₃₃BrO established by HRMS (m/z 368.1723, C₂₀H₃₃BrO requires 368.1715). Infrared analysis revealed strong OH absorption at $v_{max}^{CHCl_3}$ 3600-3400 cm⁻¹.

Analysis of the ¹H-NMR spectrum (500 MHz, CDCl₃, Table), which was particularly detailed, and extensive double resonance experiments allowed assignment of the structure 3. The doublets at & 0.76 and 0.83 are due to the methyls of an isopropyl group since they collapsed to two singlets by irradiation at the frequency (& 1.41) of an 1-H multiplet, and the singlets at & 1.00 and 1.22 are due to two <u>t</u>-Me's, one of which linked to an oxygen-bearing carbon atom. This spectrum also comprises a bromomethine signal at & 3.94 (dd) which is coupled to the signals at & 2.48 (H-12ax) and 2.08 (H-12eq); the 13ax and 13eq proton signals are clearly

visible as multiplets at δ 1.44 and 1.66 respectively.

In the olefinic region the narrow multiplets at δ 4.75 and 4.81 are attributable to the protons of the exocyclic methylene group while the 1-H double doublet at 6 5.51 coupled to the signal at & 1.53 (1H, d) can be assigned to H-2 and the 1-H multiplet at & 5.59 is due to H-3. The latter signal was proved to be coupled with the protons attached to C-4 which resonate at δ 2.21 and 1.77. The multiplet at δ 1.72 broadened by long-range coupling with the vinyl proton at 6 4.75 was assigned to H-6. The protons linked to C-8 resonate at 6 1.93 (ddd broadened by long-range coupling) and in the region at δ 1.82-1.75; finally the protons linked to C-9 appear as multiplets at & 1.26 and 2.27.

Additional evidence to confirm structure 3 was obtained by mass spectrum in which intense fragmentation peaks at m/z (%) 353, 355 $(M-CH_3)^+$ (4.92); 350, 352 $(M-H_2O)^+$ (13.53); 335, 337 $(M-H_2O-CH_3)^+$ (3.69); 325, 327 $(M-C_3H_7)^+$ (17.83); 314, 316 $(M-C_2H_6)^+$ (35.67); 307, 309 $(M-C_{3}H_{7}-H_{2}O)^{+}(17.22); 296, 298 (M-C_{4}H_{6}-H_{2}O)^{+}(100); 289 (M-Br)^{+}(88.56); 288 (M-HBr)^{+}(14.76);$ 281, 283 $(M-C_4H_6-H_2O-CH_3)^+$ (7.38); 271 $(M-H_2O-Br)^+$ (84.87); 245 $(M-C_3H_7-HBr)^+$ (51.66); 227

Table - Nuclear Magnetic Resonance Data for Bromocorodienol-

¹³ C chemical shi	ft assignment	1 H chemical shift	
61.7	1	$\frac{-1.53}{1.53}$ (d)	
134.4	2	5.51 (dd)	
126.3	3	5,59 (ddd)	ОЦ
	4a	2.21 (m)	
	4b	1.77 (m°)	15 14 12
	5a	°° (m)	
	5b	°° (m)	
55.2	6	1.72 (ddd°°°)	
153.8	7		5 LI ¹⁷ 9
	8a	1.93 (ddd°°°)	
	8b	00	10
	9a	2.27 (ddd)	19 20
	9b	1.26 (ddd)	3
44.9	10		
68.9	11	3.94 (dd)	
	12ax	2.48 (dddd)	
	12eq	2.08 (dddd)	
	13ax	1.44 (ddd)	J (Hz) 1-2=10; 2-3=15; 3-4a=7;
	13eq	1.66 (ddd)	3-4b=7; 5a-6=3; 5b-6=3;
71.6	14		6-18=6.8; 8a-8b=16; 8a-
30.7	15	1.22 (s)	9a=4.5; 8a-9b=4.5; 8b-
14.4	16	1.00 (s)	9a=14; 9a-9b=14;11-12ax=
112.2	17a	4.75 (bs)	13;11-12eq=4;12ax-12eq=
	17b	4.81 (bs)	13;12ax-13eq=4; 12ax-
29.8	18	1.40 (0)	13ax=13;12eq-13eq=4;
20.5 and 21.5	19 and 20	0.76 and 0.83 (d)	12eq-13ax=4;13ax-13eq= 13; 18-19=6.8; 18-20=6.8

°overlapped with other signals °°overlapped with other signals in the region 1.82-1.75 °°°broadened by long-range coupling

 $(M-C_{3}H_{7}-H_{2}O-HBr)^{+}$ (46.74) are present and by ¹³C-NFR spectrum (CDCl₃, 62.90 MHz) which showed, in addition to the signals reported in Table and assigned on the basis of selective decoupling experiments, six methylene signals at & 41.10, 39.51, 31.63, 30.85, 27.80, 25.58.

Final proof of the correctness of the formula 3 and the definition of the absolute stereochemistry at C-1, C-6, C-10, C-11 and C-14 was provided by treatment of 3 with NBS in anhydrous acetone at room temp. for 0.5 h which afforded bromosphaerol (1) (15% yield). The <u>E</u> configuration of the C-2 double bond is clearly indicated by the large coupling constant (J 15 Hz) between H-2 and H-3.

Bromocorodienol is composed of an irregular diterpenoid skeleton of an unprecedent nature from which bromosphaerol (1) could be biosynthesized by a bromonium-ion induced carbocyclization, which we reproduced under laboratory conditions as described above. Its biosynthesis starting from geranylgeranylpyrophosphate could be formulated by the biogenetic scheme depicted in figure which involves C-1 C-11 and C-10 C-14 cyclizations; the resulting carbonium-ion, after a rearrangement, by methyl and hydrogen shifts could generate the ion 4 from which bromocorodienol (3) could be originated by proton elimination and opening of the pentatomic ring and

Scheme

by subsequent cyclization of the resulting diene, induced by a bromonium-ion. This biogenetic pathway also accounts for the co-occurrence of presphaerol- and bromosphaerol--type diterpenoids in the <u>S</u>. <u>coronopifolius</u>. In fact the intermediate 4 could evolve to 2 as reported in the scheme

<u>Acknowledgments</u>- This work was supported by CNR (Rome) in the framework of the "Progetto Finalizzato Chimica Fine e Secondaria".

We wish to thank Miss Rita Carolla for the technical assistance.

Mass spectral data were provided by "Servizio di Spettrometria di Massa del CNR e della Università di Napoli" The assistance of the staff is gratefully acknowledged.

References.

1. Fenical, W., Finer, J. and Clardy, J. (1976) Tetrahedron Letters 731.

- Fattorusso, E., Magno, S., Santacroce, C., Sica, D., Di Blasio, B., Pedone, C., Impellizzeri,
 G., Mangiafico, S., Oriente, G., Piattelli, M. and Sciuto, S. (1976) Gazz. Chim. Ital. 106,779.
- 3. Cafieri, F., De Napoli, L., Fattorusso, E., Impellizzeri, G., Piattelli, M. and Sciuto, S. (1977) Experientia 33, 1549.
- 4. Cafieri, F., Fattorusso, E., Di Blasio, B. and Pedone, C. (1981) Tetrahedron Letters 4123.
- 5. Cafieri, F., Ciminiello, P., Fattorusso, E. and Santacroce, C. (1982) Experientia 38, 298.
- 6. Cafieri, F., Ciminiello, P., Santacroce, C. and Fattorusso, E. (1982) Phytochemistry 21,2412.
- 7. Cafieri, F., Ciminiello, P., Santacroce, C. and Fattorusso, E. (1983) Phytochemistry 22,1824.
- 8. For 1 the absolute configuration has been determined³ while only the relative stereochemistry of 2 has been established⁴.

(Received in UK 15 May 1984)